Что называется силой звука. Стандарты мощности и другие понятия звукотехники

Многим иногда приходилось задумываться, что же именно обозначает мощность, в том или ином виде приводимая в паспортах акустических систем и звукоусилительной аппаратуры. Материалов на эту тему в сети и печатных изданиях встречается на удивление мало, внятных ответов на вопросы тоже. Попытаюсь хоть как-то уменьшить число белых пятен в этой области. Некоторые более точные описания определений возникли у меня в диалоге, при попытке лучше объяснить собеседнику их смысл.

Многообразие применяемых стандартов измерения выходной мощности усилителей и мощности колонок может сбить с толку любого. Вот блочный усилитель солидной фирмы 35 Вт на канал, а вот дешевенький музыкальный центр с наклейкой 1000 Вт. Такое сравнение вызовет явное недоумение у потенциального покупателя. Самое время обратиться к стандартам...

Зарубежные и международные стандарты и определения

SPL (Sound Pressure Level) — это уровень звукового давления, развиваемого АС. SPL есть произведение относительной чувствительности АС (акустической системы) на подводимую электрическую мощность.

Следует иметь в виду, что слух является нелинейным инструментом, и для оценки субъективной громкости следует делать поправки на кривые равной слышимости (weighting curve), которые на практике различаются не только для разных уровней сигнала, но и для каждого индивидуума в отдельности.

A-weighting (weighting curve) — это взвешивающая кривая.

Зависимость, описывающая уровни звукового давления на различных частотах, воспринимаемые слухом, как одинаково громкие. Амплитудно-частотная характеристика взвешивающего фильтра, используемого при измерениях уровня звукового давления и учитывающего частотные свойства человеческого слуха.

RMS (Root Mean Squared) — это среднеквадратичное значение электрической мощности, ограниченной заданными нелинейными искажениями.

Или по другому — максимальная (предельная) синусоидальная мощность — мощность, при которой усилитель или колонка может работать в течение одного часа с реальным музыкальным сигналом без физического повреждения. Обычно на 20-25 процентов выше DIN.

Мощность замеряется синусоидальным сигналом на частоте 1 кГц при достижении 10 % THD. Она вычисляется, как произведение среднеквадратичных значений напряжения и тока при эквивалентном количестве теплоты, создаваемой постоянным током.

Для синусоидального сигнала среднеквадратичное значение меньше амплитудного в V2 раз (x 0,707). Вообще же, это виртуальная величина, термин «среднеквадратичный», строго говоря, может быть применен к напряжению или силе тока, но не к мощности. Известный аналог — действующее значение (все знают его для сети электропитания переменным током — это те самые 220 V для России).

Попробую объяснить, почему это понятие для описания звуковых характеристик малоинформативно. Среднеквадратичная мощность — это производящая работу. То есть, имеет смысл в электротехнике. И относится не обязательно к синусоиде. В случае музыкальных сигналов громкие звуки мы слышим лучше, чем слабые. И на органы слуха воздействуют больше амплитудные значения, а не среднеквадратичные.

То есть громкость не эквивалентна мощности. Поэтому среднеквадратичные значения имеют смысл в электросчетчике, а вот амплитудные в музыке. Еще более популистский пример - АЧХ. Провалы АЧХ заметны меньше, чем пики. То есть громкие звуки более информативны, чем тихие, а усредненное значение будет мало о чем говорить.

Таким образом, стандарт RMS был одной попыток описать электрические параметры звуковой аппаратуры, как потребителя электроэнергии.

В усилителях и акустике этот параметр тоже, по сути, имеет весьма ограниченное применение — усилитель, который выдает 10% искажений не на максимальной мощности (когда возникает клиппинг — ограничение амплитуды усиливаемого сигнала с возникающими специфическими динамическими искажениями), еще поискать.

До достижения максимальной мощности искажения транзисторных усилителей, например, не превышают зачастую сотых долей процента, а уже выше резко возрастают (нештатный режим). Многие акустические системы при длительной работе с таким уровнем искажений уже способны выйти из строя.

Для совсем уж дешевой техники указывается другая величина — PMPO, совсем уж бессмысленный и никем не нормированный параметр, а значит, друзья-китайцы измеряют его так, как бог на душу положит. Если точнее, в попугаях, причем каждый в своих. Значения PMPO часто превышают номинальные вплоть до коэффициента 20.

PMPO (Peak Music Power Output) — это пиковая кратковременная музыкальная мощность, величина, которая означает максимально достижимое пиковое значение сигнала независимо от искажений вообще за минимальный промежуток времени (обычно за 10 mS, но, вообще, не нормировано), мощность, которую динамик колонки может выдержать в течение 1-2 секунд на сигнале низкой частоты (около 200 Гц) без физического повреждения.

Обычно в 10-20 раз выше DIN.

Как следует из описания, параметр еще более виртуальный и бессмысленный в практическом применении. Посоветую эти значения не воспринимать всерьез и на них не ориентироваться. Если вас угораздило покупать аппаратуру с параметрами мощности, указанными только, как PMPO, то единственный совет Ч послушать самостоятельно и определить, подходит это вам или нет.

100 W (PMPO) = 2 x 3 W (DIN)

DIN — это аббревиатура от Deutsches Institut fur Normung.

Немецкая неправительственная организация, занимающаяся стандартизацией для лучшей интеграции рынка товаров и услуг в Германии и на международном рынке. Продуктами этой организации являются самые различные стандарты, касающиеся самых различных сфер применения, в том числе и относящиеся к области звуковоспроизведения, которые нас здесь и интересуют.

К DIN 45500, где описываются требования к аппаратуре высокой верности звучания (иначе Hi-Fi — High Fidelity), относятся:

  • DIN 45500-1 High fidelity audio equipment and systems; minimum performance requirements.
  • DIN 45500-10 High fidelity audio equipment and systems; minimum performance requirements for headphones.
  • DIN 45500-2 Hi-Fi technics; requirements for tuner equipments.
  • DIN 45500-3 Hi-Fi technics; requirements for disk record reproducing equipments.
  • DIN 45500-4 High fidelity audio equipment and systems; minimum performance requirements for magnetic recording and reproducing equipment.
  • DIN 45500-5 High fidelity audio equipment and systems; minimum performance requirements for microphones.
  • DIN 45500-6 High fidelity audio equipment and systems; minimum performance requirements for amplifiers.
  • DIN 45500-7 Hi-Fi-technics; requirements for loudspeakers.
  • DIN 45500-8 Hi-Fi technics; requirements for sets and systems.

DIN POWER — значение выдаваемой на реальной нагрузке (для усилителя) или подводимой (к АС) мощности, ограниченной указанными нелинейными искажениями. Измеряется подачей сигнала с частотой 1 кГц на вход устройства в течение 10 минут. Мощность замеряется при достижении 1 % THD (нелинейных искажений).

Есть и другие виды измерений, например, DIN MUSIC POWER, описывающая мощность музыкального (шумового) сигнала. Обычно указываемая величина DIN music выше, чем приводимая, как DIN. Примерно соответствует синусоидальной мощности - мощность, при которой усилитель или колонка может работать в течение длительного времени с сигналом «розового шума» без физического повреждения.

Отечественные стандарты

В России используется два параметра мощности — номинальная и синусоидальная. Это нашло свое отражение в названиях акустических систем и обозначениях динамиков. Причем, если раньше в основном использовалась номинальная мощность, то теперь чаще — синусоидальная. Например, колонки 35АС впоследствии получили обозначение S-90 (номинальная мощность 35 Вт, синусоидальная мощность 90 Вт)

Номинальная мощность (ГОСТ 23262-88) — это величина искусственная, она оставляет свободу выбора изготовителю. Разработчик волен указать значение номинальной мощности, соответствующее наиболее выгодному значению нелинейных искажений.

Обычно указанная мощность подгонялась под требования ГОСТ к классу сложности исполнения при наилучшем сочетании измеряемых характеристик. Указывается как у АС, так и у усилителей. Иногда это приводило к парадоксам — при искажениях типа «ступенька», возникающих в усилителях класса АВ на малых уровнях громкости, уровень искажений мог снижаться при увеличении выходной мощности сигнала до номинальной.

Таким образом достигались рекордные номинальные характеристики в паспортах усилителей, с крайне низким уровнем искажений при высокой номинальной мощности усилителя. Тогда как наивысшая статистическая плотность музыкального сигнала лежит в диапазоне амплитуд 5-15% от максимальной мощности усилителя.

Вероятно, поэтому российские усилители заметно проигрывали на слух западным, у которых оптимум искажений мог быть на средних уровнях громкости, тогда как в СССР шла гонка за минимумом гармонических и иногда интермодуляционных искажений любой ценой на одном, номинальном (почти максимальном) уровне мощности.

Паспортная шумовая мощность — это электрическая мощность, ограниченная исключительно тепловыми и механическими повреждениями (например: сползание витков звуковой катушки от перегрева, выгорание проводников в местах перегиба или спайки, обрыв гибких проводов и т.п.) при подведении розового шума через корректирующую цепь в течение 100 часов.
Синусоидальная мощность — мощность, при которой усилитель или колонка может работать в течение длительного времени с реальным музыкальным сигналом без физического повреждения.

Обычно в 2-3 раза выше номинальной.

Максимальная кратковременная мощность — это электрическая мощность, которую громкоговорители АС выдерживают без повреждений (проверяется по отсутствию дребезжаний) в течение короткого промежутка времени.

В качестве испытательного сигнала используется розовый шум. Сигнал подается на АС в течение 2 сек. Испытания проводятся 60 раз с интервалом в 1 минуту. Данный вид мощности дает возможность судить о кратковременных перегрузках, которые может выдержать громкоговоритель АС в ситуациях, возникающих в процессе эксплуатации.

Максимальная долговременная мощность — это электрическая мощность, которую выдерживают громкоговорители АС без повреждений в течение 1 мин.

Испытания повторяют 10 раз с интервалом 2 минуты. Испытательный сигнал тот же.

Максимальная долговременная мощность определяется нарушением тепловой прочности громкоговорителей АС (сползанием витков звуковой катушки и др.).

Розовый шум (используемый в этих испытаниях) — группа сигналов со случайным характером и равномерной спектральной плотностью распределения по частотам, убывающей с увеличением частоты со спадом 3 дБ на октаву во всем диапазоне измерений, с зависимостью среднего уровня от частоты в виде 1/f.

Розовый шум имеет постоянную (по времени) энергию на любом из участков частотной полосы.

Белый шум — это группа сигналов со случайным характером и равномерной и постоянной спектральной плотностью распределения по частотам.

Белый шум имеет одинаковую энергию на любом из участков частот.

Октава — это музыкальная полоса частот, соотношение крайних частот которой равно 2.
Электрическая мощность — это мощность, рассеиваемая на омическом эквивалентном сопротивлении, равном по величине номинальному электрическому сопротивлению АС, при напряжении, равном напряжению на зажимах АС.

То есть, на сопротивлении, эмулирующем реальную нагрузку в тех же условиях.

Не стоит забывать и о сопротивлении колонок. В основном на рынке присутствуют колонки сопротивлением 4, 6, 8 Ом, реже встречаются 2 и 16 ом. Мощность усилителя будет различаться при подключении колонок разного сопротивления.

В инструкции усилителя обычно указано, на какое сопротивление колонок он рассчитан, или мощность для различного сопротивления колонок. Если усилитель допускает работу с колонками различного сопротивления, то его мощность растет с понижением сопротивления.

Если Вы будете использовать колонки сопротивлением ниже указанного для усилителя, это может вызвать его перегрев и выход из строя, если выше — то указанная выходная мощность достигнута не будет. Конечно, на громкость акустики влияет не только выходная мощность усилителя, но и чувствительность колонок, но об этом в следующий раз.

Главное — не забывать, что мощность — это только один из параметров, далеко не самый главный для получения хорошего звука.

Шумы создаются звуковыми волнами , возникающими при расширении и сжатии в воздухе и других средах. В системах кондиционирования и вентиляции шумы могут возникать и распространяться в воздухе, корпусах воздуховодов, передвигающихся по трубам жидкостях и т.д.

Шумы могут иметь различную частоту и интенсивность.

Скорость распространения звука

Шум распространяется с гораздо меньшей скоростью, чем световые волны. Скорость звука в воздухе - примерно 330 м/с. В жидкостях и твердых телах скорость распространения шума выше, она зависит от плотности и структуры вещества.

Пример: скорость звука в воде равна 1.4 км/с, а в стали - 4.9 км/с.

Частота шума

Основной параметр шума - его частота (число колебаний в секунду). Единица измерения частоты - 1 герц (Гц), равный 1 колебанию звуковой волны в секунду.

Человеческий слух улавливает колебания частот от 20 Гц до 20000Гц. При работе систем кондиционирования учитывают обычно спектр частот от 60 до 4000Гц.

Для физических расчетов слышимая полоса частот делится на 8 групп волн. В каждой группе определена средняя частота: 62 Гц, 125 Гц, 250 Гц, 500 Гц, 1000 Гц, 2 кГц, 4 кГц и 8 кГц. Любой шум раскладывается по группам частот, и можно найти распределение звуковой энергии по различным частотам.

Мощность звука

Мощность звука какой-либо установки - это энергия, которая выделяется установкой в виде шума за единицу времени. Измерять силу шума в стандартных единицах мощности неудобно, т.к. спектр звуковых частот очень широк, и мощность звуков отличается на много порядков.

Пример: сила шума при поступлении в помещение воздуха под низким давлением равна одной стомиллиардной ватта, а при взлете реактивного самолета сила шума достигает 1000 Вт.

Поэтому уровень мощности звука измеряют в логарифмических единицах - децибелах (дБ). В децибелах сила шума выражается двух- или трехзначными числами, что удобно для расчетов.

Уровень мощности звука в дБ - функция отношения мощности звуковых волн возле источника шума к нулевому значению W 0 , равному 10 -12 Вт. Уровень мощности рассчитывается по формуле:

L w = 10lg(W/W0)

Пример: если мощность звука вблизи источника равна 10 Вт, то уровень мощности составит 130 дБ, а если мощность звука равна 0.001 Вт, то уровень мощности - 90 дБ.

Мощность звука и уровень мощности независимы от расстояния до источника шума. Они связаны лишь с параметрами и режимом работы установки, поэтому важны для проектирования и сравнения различных систем кондиционирования и вентиляции.

Уровень мощности нельзя измерить непосредственно, он определяется косвенно специальным оборудованием.

Уровень давления звука

Уровень давления звука L p - это ощущаемая интенсивность шума, измеряемая в дБ.

L p = P/P0

Здесь P - давление звука в измеряемом месте, мкПа, а P 0 = 2 мкПа - контрольная величина.

Уровень звукового давления зависит от внешних факторов: расстояния до установки, отражения звука и т.д. Наиболее простой вид имеет зависимость уровня давления от расстояния. Если известен уровень мощности шума L w , то уровень звукового давления L p в дБ на расстоянии r (в метрах) от источника вычисляется так:

L p = L w - lgr - 11

Пример: мощность звука холодильного блока равна 78 дБ. Уровень звукового давления на расстоянии 10 м от него равен: (78 - lg10 - 11) дБ = 66 дБ.

Если известен уровень звукового давления L p1 на расстоянии r1 от источника шума, то уровень звукового давления L p2 на расстоянии r2 будет вычисляться так:

L p2 = L p1 - 20*lg(r2/r1)

Пример: Уровень звукового давление на расстоянии 1 м от установки равно 65 дБ. Тогда уровень звукового давления на расстоянии 10 м от нее равен: (65 - 20*lg10) дБ = (65 - 20) дБ = 45 дБ..

Вообще, в открытом пространстве уровень звукового давления снижается на 6 дБ при увеличении расстояния до источника шума в 2 раза. В помещении зависимость будет сложнее из-за поглощения звука поверхностью пола, отражения звука и т.д.

Громкость шума

Чувствительность человека к звукам разной частоты неодинакова. Она максимальна к звукам частотой около 4 кГц, стабильна в диапазоне от 200 до 2000 Гц, и снижается при частоте менее 200 Гц (низкочастотные звуки).

Громкость шума зависит от силы звука и его частоты. Громкость звука оценивают, сравнивая ее с громкостью простого звукового сигнала частотой 1000Гц. Уровень силы звука частотой 1000Гц, столь же громкого, как измераемый шум, называется уровнем громкости данного шума. На приведенной ниже диаграмме показана зависимость силы звука от частоты при постоянной громкости.

При малом уровне громкости человек менее чувствителен к звукам очень низких и высоких частот. При большом звуковом давлении ощущение звука перерастает в болевое ощущение. На чатоте 1 кГц болевой порог соответствует давлению 20 Па и силе звука 10 Вт/кв.м.

Диаграмма кривых равной громкости

Шумовые характеристики оборудования

Шумовые характеристики оборудования представляют в виде таблиц, где содержатся:
  1. уровень мощности шума в дБ с разбивкой по полосам частот
  2. общий уровень звукового давления
Звуковое давление в помещениях нормируется санитарными нормативами, допустимые значения различны для разных частот. Шум, создаваемый системами вентиляции и кондиционирования, принимают на 5 дБ ниже допустимого уровня шума в помещении (СНиП 11-12-77).

Суммирование источников шума

Шум от нескольких источников не соответствует сумме шумов от каждого источника в отдельности. Для двух находящихся рядом установок шум определяется следующим образом:
  1. Если показатели уровня шума одинаковы , то суммарный уровень шума на 3 дБ превышает уровень шума каждой установки.
  2. Если разница уровней шума превышает 10 дБ , суммарный уровень шума равен величине большего из двух шумов.

    Например, общий шум от двух установок с уровнями 30 и 60 дБ, равен 60 дБ.

  3. Если разница уровней шума не более 10 дБ , нужно воспользоваться приведенной ниже таблицей. Вычисляем разность уровней шума установок.
Например, L 1 = 52 дБ, а L 2 = 48 дБ. Разность равна 4 дБ. В верхней строке таблицы найдем 4 дБ, тогда в нижней строке видим показатель 1.5 дБ. Прибавим этот показатель к большему уровню шума: 52 дБ + 1.5 дБ = 53.5 дБ . Это и будет общий уровень шума от двух установок.

Если источников шума более двух, метод расчета не меняется, и источники рассматриваются парами, начиная с самых слабых.

Например, есть четыре установки с уровнями шума 25 дБ, 38 дБ, 43 дБ и 50 дБ.

Сначала делаем подсчет для двух слабейших установок: 38 - 25 = 13 дБ. Разница больше 10 дБ, и эту установку вообще не учитываем.

Для установок 38 и 43 дБ: 43 - 38 = 5 дБ, поправка из таблицы равна 1.2 дБ. Суммарный шум трех установок: 43 + 1.2 = 44.2 дБ.

Теперь найдем полный шум всех установок. 50 - 44.2 = 5.8 дБ. Округляя разность уровней шума до 6 дБ, по таблице находим поправку 1.0 дБ.

Итак, общий уровень шума четырех установок равен 50 + 1 = 51 дБ.

Силой звука называется величина, измеряемая количеством энергии, ежесекундно протекающей через площадку в 1 см 2 , перпендикулярную к направлению звуковой волны .

Силу звука измеряют в эрг /см 2 · сек или в дж /м 2 сек.

Силе звука соответствует ощущение громкости, подобно тому, как частоте колебаний – высота тона .

Сила звука и громкость – понятия неравнозначные. Сила звука характеризует физический процесс независимо от того, воспринимается ли он слушателем или нет, громкость же – субъективное качество звука.

Рассмотрим теперь, от чего зависит сила звука, а следовательно, и его громкость. Запишем для этого колебания камертона последовательно несколько раз с некоторыми промежутками во времени. Звук камертона постепенно затихает, и это сейчас же отражается на графике его колебаний.

Как видно из графиков 1, 2, 3, период колебаний камертона не менялся: гребни и впадины на всех трёх графиках одинаково часты. Но по мере ослабления звука уменьшалась амплитуда колебаний. У самого сильного звука амплитуда была наибольшей (график 1); когда звук стал почти неслышимым, амплитуда колебаний оказалась маленькой (график 3). Когда камертон перестанет колебаться, график обратится в прямую линию.

Таким образом, мы видим, что сила звука связана с амплитудой колебаний.

Чем больше амплитуда колебаний, тем сильнее звук, чем меньше амплитуда, тем звук слабее .

Когда какое-нибудь тело звучит, то оно приводит в колебание окружающие частицы среды (например, частицы воздуха) и отдаёт им при этом часть своей энергии. Запас энергии в звучащем теле уменьшается, уменьшается амплитуда его колебаний, ослабевает звук.

При распространении в среде звук ослабевает по мере удаления от источника. Вся энергия, которая сначала была сосредоточена около одного центра – источника звука, по мере удаления от него будет распределяться на всё большее и большее число частиц среды; на долю каждой частицы будет приходиться всё меньше и меньше энергии. При распространении звуковых волн в изотропной среде поверхность распространяющейся волны будет сферой с центром О, практически совпадающим с источником звука. Поверхность сферы будет возрастать пропорционально квадрату расстояния от источника. Энергия, приходящаяся на каждую единицу площади поверхности сферы, будет изменяться обратно пропорционально квадрату расстояния от источника звука. Отсюда сила звука изменяется обратно пропорционально квадрату расстояния от источника звука. Меняется при этом и связанное с этой величиной ощущение громкости, что каждому известно из опыта.

Если направить звук вдоль трубы с одним и тем же поперечным сечением, то в этом случае распространяющийся звук почти не теряет своей силы. Малое ослабление звука с расстоянием можно наблюдать и в длинных узких коридорах.

Часто для переговоров на расстоянии применяются конусообразные трубы – рупоры. Рупор не даёт звуковым волнам рассеиваться во все стороны и заставляет их идти в одном направлении. Рупором можно воспользоваться также для того, чтобы собрать рассеянные звуковые волны. Приложим рупор к уху его узкой стороной, и звуки усилятся. На ухо действует вся энергия, пришедшая к внешней, широкой стороне рупора. Во сколько раз внешнее отверстие рупора по площади больше отверстия уха, во столько раз усилится и звук.

Наше ухо снабжено собственным рупором – ушной раковиной. Иногда, чтобы улавливать слабые звуки, мы увеличиваем этот рупор, прикладывая руку к ушной раковине.

Человеческое ухо обладает исключительной чувствительностью: оно улавливает звуки, которые в миллион раз слабее человеческого голоса обычной громкости. С другой стороны, человек привыкает переносить и такие сильные звуки, как артиллерийская канонада.

Однако наше ухо оказывается неодинаково чувствительным к звукам разной частоты: наиболее чувствительно оно к тонам, лежащим в пределах 1000–3000 гц. Чтобы звук был услышан в условиях наибольшей чувствительности (около 2000 гц), звуковые волны, как показывают современные измерения, должны приносить к уху за каждую секунду энергию не менее 5 триллионных долей эрга. Амплитуда колебаний частиц воздуха при этом оказывается меньше одной десятимиллиардной миллиметра. Интересно, что чувствительность глаза к энергии света такого же порядка, как и чувствительность уха к энергии звука.

]Обычно, децибелами принято измерять громкость звука. Децибел – это десятичный логарифм. Это значит, что увеличение громкости на 10 децибел показывает, что звук стал в два раза громче, чем изначальный. Громкость звука в децибелах обычно описывается формулой 10Log 10 (I/10 -12) , где I - интенсивность звука в ваттах/метр квадратный.

Шаги

Сравнительная таблица уровней шума в децибелах

В приведенной ниже таблице описаны уровни децибел в порядке возрастания, и соответствующие им примеры источников звука. Также предоставлена информация о негативных последствиях для слуха напротив каждого уровня шума.

Уровни децибел для разных источников шума
Децибелы Пример источника Влияние на здоровье
0 Тишина Отсутствуют
10 Дыхание Отсутствуют
20 Шепот Отсутствуют
30 Тихий фоновый шум на природе Отсутствуют
40 Звуки в библиотеке, тихий фоновый шум в городе Отсутствуют
50 Спокойный разговор, обычный фоновый шум для пригорода Отсутствуют
60 Шум офиса или ресторана, громкий разговор Отсутствуют
70 Телевизор, шум шоссе с расстояния 15.2 метров (50 футов) Заметка; некоторым неприятен
80 Шум завода, кухонного комбайна, автомойки с расстояния 6.1 метра (20 футов) Возможны повреждения слуха при длительном воздействии
90 Газонокосилка, мотоцикл с расстояния 7.62 м (25 футов) Высока вероятность повреждения слуха при длительном воздействии
100 Лодочный мотор, отбойный молоток Высока вероятность серьезных повреждений слуха при длительном воздействии
110 Громкий рок-концерт, сталелитейный завод Может быть сразу больно; очень высока вероятность серьезных повреждений слуха при длительном воздействии
120 Цепная пила, гром Обычно наступает моментальная боль
130-150 Взлет истребителя с авианосца Возможна немедленная потеря слуха, или разрыв барабанной перепонки.

Измерение уровня звука с помощью приборов

    Используйте ваш компьютер. Со специальными программами и оборудованием, несложно измерить уровень шума в децибелах прямо на компьютере. Ниже перечислены только некоторые способы, как это можно сделать. Обратите внимание, что использование более качественного записывающего оборудования всегда даст лучший результат; другим словами, микрофона встроенного в ваш ноутбук может быть достаточно для некоторых задач, но высококачественный внешний микрофон даст более точный результат.

  1. Используйте мобильное приложение. Для измерения уровня звука в любом месте, мобильные приложения придутся как нельзя кстати. Микрофон на вашем мобильном устройстве скорее всего не даст такого качества, как внешний микрофон, подключенный к компьютеру, но он может быть на удивление точным. Например, точность считывания на мобильном телефоне вполне может отличаться на 5 децибел от профессионального оборудования. Ниже приведен список программ для считывания уровня звука в децибелах для разных мобильных платформ:

    • Для устройств Apple: Decibel 10th, Decibel Meter Pro, dB Meter, Sound Level Meter
    • Для устройств на Android: Sound Meter, Decibel Meter, Noise Meter, deciBel
    • Для телефонов на Windows: Decibel Meter Free, Cyberx Decibel Meter, Decibel Meter Pro
  2. Используйте профессиональный измеритель децибел. Обычно это недешево, но, возможно, это самый простой способ получить точные измерения уровня звука, который вас интересует. Также такое устройство называют "измеритель уровня звука", это специализированное устройство (можно купить в интернет-магазине или специализированных магазинах), которые использует чувствительный микрофон для измерения уровня шума вокруг и выдает точное значение в децибелах. Так как подобные устройства не пользуются большим спросом, они можно быть достаточно дорогими, зачастую цены на них начинаются с $200 даже за устройства начального класса.

    • Обратите внимание, что измеритель децибел/уровня звука может называть несколько иначе. Например, другое похожее устройство под названием "измеритель шума" делает то же самое, что и измеритель уровня звука.

    Математическое вычисление децибел

    1. Узнайте интенсивность звука в ваттах/метр квадратный. В повседневной жизни, децибелы применяются как простая мера громкости. Однако, все не так просто. В физике децибелы часто рассматривают как удобный способ выражения "интенсивности" звуковой волны. Чем больше амплитуда звуковой волны, тем больше энергии она передает, тем больше частиц воздуха колеблется на ее пути, и тем интенсивнее сам звук. Из-за прямой связи между интенсивностью звуковой волны и громкостью в децибелах, есть возможность найти значение децибел, зная только интенсивность уровня звука (которая обычно измеряется в ваттах/метр квадратный)

      • Заметьте, что для обычных звуков значение интенсивности очень мало. Например, звук с интенсивностью 5 ×10 -5 (или 0.00005) ватт/метр квадратный соответствует приблизительно 80 децибелам, что приблизительно соответствует громкости блендера или кухонного комбайна.
      • Для лучшего понимания отношения между интенсивностью и уровнем децибел, давайте решим одну задачу. Для примера возьмем такую: давайте считать, что мы – звукорежиссеры, и нам нужно опередить уровень фонового шума в студии звукозаписи, чтобы улучшить качество записываемого звука. После установки оборудования, мы зафиксировали фоновый шум интенсивностью 1 × 10 -11 (0.00000000001) ватт/метр квадратный . Далее используя эту информацию мы можем вычислить уровень фонового шума студии в децибелах.
    2. Поделите на 10 -12 . Если вы знаете интенсивность вашего звука, вы можете легко подставить ее в формулу 10Log 10 (I/10 -12) (где "I" – интенсивность в ваттах/метр квадратный) чтобы получить значение в децибелах. Для начала поделите 10 -12 (0.000000000001). 10 -12 отображает интенсивность звука с оценкой 0 на шкале децибел, сравнивая интенсивность вашего звука с этим числом, вы найдете его отношение к начальному значению.

      • В нашем примере мы разделили значение интенсивности 10 -11 на 10 -12 и получили 10 -11 /10 -12 = 10 .
    3. Вычислим Log 10 от этого числа и умножим его на 10. Чтобы закончить решение, вам осталось лишь взять логарифм по основанию 10 от получившегося числа и затем, наконец, умножить его на 10. Это подтверждает, что децибелы – это логарифмическое значение по основанию 10 – другими словами, увеличение уровня шума на 10 децибел говорит об удвоении громкости звука.

      • Наш пример легко решить. Log 10 (10) = 1. 1 ×10 = 10. Поэтому, значение фонового шума в нашей студии равняется 10 децибел . Это достаточно тихо, но все еще улавливаемо нашим высококачественным звукозаписывающим оборудованием, потому нам, вероятно, нужно устранить источник шума для достижения более высокого качества записи.
    4. Понимание логарифмической природы децибел. Как было сказано выше, децибелы – это логарифмические значения с основанием 10. Для любого данного значения децибел, шум на 10 децибел большой – громче изначального в два раза, а шум больший на 20 децибел – в четыре раза и так далее. Это дает возможность обозначить большой промежуток интенсивностей звука, которые могут быть восприняты человеческим ухом. Самый громкий звук, который человек может услышать, не испытывая боли – в миллиард раз более громкий, чем самый тихий звук, который человек может услышать. Используя децибелы, мы избегаем использования огромных чисел для описания обычных звуков - вместо этого нам достаточно трех цифр.

      • Подумайте, что проще использовать: 55 децибел или 3 × 10 -7 ватт/квадратный метр? Оба значения равны, но вместо использования научной формы записи (в виде очень малой доли числа), гораздо удобнее использовать децибелы, которые являются своего рода простым сокращением для легкого повседневного использования.

Звуком называют механические колебания частиц упругой среды (воздух, вода, металл и т. п.), субъективно воспринимаемые органом слуха. Звуковые ощущения вызываются колебаниями среды, происходящими в диапазоне частот от 16 до 20 000 гц. Звуки с частотами, лежащими ниже этого диапазона, называются инфразвуком, а выше - ультразвуком.

Звуковое давление - переменное давление в среде, обусловленное распространением в ней звуковых волн. Величина звукового давления оценивается силой действия звуковой волны на единицу площади и выражается в ньютонах на квадратный метр (1 н/метр квадартный=10 бар).

Уровень звукового давления - отношение величины звукового давления к нулевому уровню, за который принято звуковое давление н/квадратный метр:

Скорость звука зависит от физических свойств среды, в которой распространяются механические колебания. Так, скорость звука в воздухе равна 344 м/сек при T=20°С, в воде 1 481 м/сек (при T=21,5°С), в дереве 3 320 м/сек и в стали 5 000 м/сек.

Сила звука (или интенсивность) - количество звуковой энергии, проходящей за единицу времени через единицу площади; измеряется в ваттах на квадратный метр (вт/м2).

Следует отметить, что звуковое давление и сила звука связаны между собой квадратичной зависимостью, т. е. при увеличении звукового давления в 2 раза сила звука возрастает в 4 раза.

Уровень силы звука - отношение силы данного звука к нулевому (стандартному) уровню, за который принята сила звука вт/м2, выраженное в децибелах:

Уровни звукового давления и силы звука, выраженные в децибелах, совпадают по величине.

Порог слышимости - наиболее тихий звук, который еще способен слышать человек на частоте 1000 гц, что соответствует звуковому давлению н/м2.

Громкость звука - интенсивность звукового ощущения, вызванная данным звуком у человека с нормальным слухом Громкость зависит от силы звука и его частоты, изменяется пропорционально логарифму силы звука и выражается количеством децибел, на которое данный звук превышает по интенсивности звук, принятый за порог слышимости. Единица измерения громкости - фон.

Порог болевого ощущения - звуковое давление или сила звука, воспринимаемые как болевое ощущение. Порог болевого ощущения мало зависит от частоты и наступает при звуковом давлении порядка 50 н/м2.

Динамический диапазон - диапазон громкостей звука, или разность уровней звукового давления самого громкого и самого тихого звуков, выраженная в децибелах.

Дифракция - отклонение от прямолинейного распространения звуковых волн.

Рефракция - изменение направления распространения звуковых волн, вызванное различиями в скорости на разных участках пути.

Интерференция - сложение волн одинаковой длины, приходящих в данную точку пространства по нескольким различным путям, вследствие чего амплитуда результирующей волны в разных точках оказывается различной, причем максимумы и минимумы этой амплитуды чередуются между собой.

Биения - интерференция двух звуковых колебаний, мало отличающихся по частоте. Амплитуда возникающих при этом колебаний периодически увеличивается или уменьшается во времени с частотой, равной разности интерферирующих колебаний.

Реверберация - остаточное «после-звучание» в закрытых помещениях. Образуется вследствие многократного отражения от поверхностей и одновременного поглощения звуковых волн. Реверберация характеризуется промежутком времени (в секундах), в течение которого сила звука уменьшается на 60 дб.

Тон - синусоидальное звуковое колебание. Высота тона определяется частотой звуковых колебаний и растет с увеличением частоты.

Основной тон - наиболее низкий тон, создаваемый источником звука.

Обертоны - все тоны, кроме основного, создаваемые источником звука. Если частоты обертонов в целое число раз больше частоты основного тона, то их называют гармоническими обертонами (гармониками).

Тембр - «окраска» звука, которая определяется количеством, частотой и интенсивностью обертонов.

Комбинационные тоны - дополнительные тоны, возникающие вследствие нелинейности амплитудной характеристики усилителей и источников звука. Комбинационные тоны появляются при воздействии на систему двух или большего числа колебаний с различными частотами. Частота комбинационных тонов равна сумме и разности частот основных тонов и их гармоник.

Интервал - отношение частот двух сравниваемых звуков. Наименьший различимый интервал между двумя соседними по частоте музыкальными звуками (каждый музыкальный звук имеет строго определенную частоту) называется полутоном, а интервал частот с отношением 2:1 - октавой (музыкальная октава состоит из 12 полутонов); интервал с отношением 10: 1 называют декадой.