Беспроводные сенсорные сети. Беспроводные распределённые сенсорные сети

Уже близок тот день, когда сотни миллионов полупроводниковых сенсоров будут интегрироваться во все, что только возможно, начиная от брелока на ключе и заканчивая детской коляской. И все они будут в состоянии не только выступать в роли интеллектуальных датчиков, но и выполнять первичную обработку информации, а также взаимодействовать друг с другом, образуя единую беспроводную сенсорную сеть. При этом такие датчики практически не будут потреблять электроэнергию, так как встроенных миниатюрных аккумуляторов будет хватать на несколько лет, то есть на весь срок работы сенсоров. Это будет концептуально новый тип компьютерной системы, функционирующей с помощью беспроводной сенсорной сети. Такую сеть принято называть Ad-hoc Wireless Sensor Networks. Термин Ad-hoc позаимствован из современных беспроводных сетей, действующих, например, в стандарте IEEE 802.11b. Такие беспроводные сети имеют два режима взаимодействия: режим Infrastructure и Ad-hoc. В режиме Infrastructure узлы сети взаимодействуют друг с другом не напрямую, а через точку доступа (Access Point), которая выполняет в беспроводной сети роль своеобразного концентратора (аналогично тому, как это происходит в традиционных кабельных сетях). В режиме Ad-hoc, который также называется Peer-to-Peer («точка-точка»), станции непосредственно взаимодействуют друг с другом. Соответственно и в беспроводных сенсорных сетях режим Ad-hoc означает, что все сенсоры напрямую взаимодействуют друг с другом, создавая своеобразную сотовую сеть

Беспроводные сенсорные сети - это своеобразный шаг на пути перехода в следующую эпоху - когда компьютеры будут непосредственно соединены с физическим миром и смогут угадывать желания пользователей, а также принимать за них решения.
Давайте немного помечтаем, что принесут нам такие сенсорные сети в будущем. Представьте себе детские кроватки, слушающие дыхание младенцев; браслеты, следящие за состоянием пациентов в клинике; детекторы дыма, которые могут не только в случае необходимости вызвать пожарных, но и заранее проинформируют их об очаге возгорания и степени сложности пожара. Электронные устройства смогут распознавать друг друга, источники питания будут напоминать о том, что им необходимо «подкрепиться».

Представьте сотни тысяч сенсорных датчиков, объединенных в общую сеть в лесу. В таком лесу просто невозможно будет заблудиться, поскольку передвижение человека будет фиксироваться, и анализироваться датчиками. Другой пример - датчики в поле, настроенные на контроль за состоянием почвы и в зависимости от меняющихся условий регулирующие полив и количество вносимых удобрений.
Не менее полезными будут сенсорные сети на дорогах. Общаясь друг с другом, они смогут регулировать поток машин. Это же мечта любого водителя - дороги без пробок! Такие сети смогут справляться с этой задачей значительно эффективнее, чем любое ведомство. Проблема контроля
правонарушений на дорогах решится при этом сама собой.

Использование сенсорных сетей для управления электроснабжением позволит достичь невероятной экономии электроэнергии. Представьте себе такую управляющую сеть у вас в квартире. Отслеживая ваше местонахождение, датчики смогут повсюду выключать за вами свет и включать его по мере необходимости. Ну а если использовать такие сети для контроля освещения улиц и дорог, то проблема нехватки электричества исчезнет сама собой. Для того, чтобы сенсорные сети стали реальностью завтрашнего дня, исследования в этом направлении ведутся уже сегодня. И лидером в этой области является корпорация Intel, которая поддерживает все передовые компьютерные технологии будущего. Особое внимание, уделяя разработке беспроводных много узловых сенсорных сетей, способных к самостоятельному автоматическому формированию и настройке по мере необходимости. Реализация этой технологии позволит развернуть сеть недорогих, но при этом весьма сложных полупроводниковых сенсорных устройств, которые смогут самостоятельно устанавливать связь друг с другом, докладывая о тех или иных изменениях в окружающей обстановке. К примеру, сенсор Mica оснащается 128 килобайтами программой флэш-памяти, 256 килобайтами флэш-памяти для хранения данных и радиопередатчиком, работающим на частоте 900 МГц.
Некоторые из этих устройств работают под управлением операционной системы
TinyOS , код этой операционной системы является открытым и состоит всего из
8.5 Кб.

Такие устройства найдут применение в принципиально новых областях, например в разработке интеллектуальных предметов одежды, подключенных одеял, которые будут следить за состоянием здоровья новорожденного и сообщать важнейшие показатели его жизнедеятельности, интеллектуальных фермерских хозяйств, в которых полупроводниковые датчики, установленные в почве, займутся управлением ирригационной
системой и внесением удобрений. Исследованием сенсорных сетей в корпорации Intel занимается
знаменитая исследовательская лаборатория Intel Berkeley Research laboratory, расположенная в штате Калифорния. Существующие сегодня экспериментальные сенсорные сети лишь отчасти удовлетворяют вышеизложенным требованиям. Так, на сегодняшний день сети состоят только из сотен сенсоров с ограниченной зоной покрытия и выполняют лишь четко определенные задачи. Они способны передавать лишь определенный тип информации от одного датчика к другому и только в заданной полосе пропускания. Потребление энергии также нельзя назвать ничтожно малым
- заряда батареи хватает всего на несколько дней. Существующие сенсорные датчики пока еще достаточно инертны, а о высокой надежности и незаметности в эксплуатации (хотя бы из-за размеров) и речи не идет. Ну и, конечно же, такие сенсоры стоят достаточно дорого, так что сеть, состоящая из сотни сенсоров, обходится недешево. Но надо помнить, что речь идет об экспериментальных сетях и о развитии технологии будущего. В то же время экспериментальные сенсорные сети уже сейчас приносят пользу. Одна из таких сенсорных сетей, созданная совместными усилиями исследовательской лаборатории Intel Berkeley, институтом Атлантики и Калифорнийским университетом, действует на Большом утином острове (Great Duck Island) в штате Мэн.

Задача этой сети - изучение микросреды обитания различных биологических организмов населяющих остров.
Любое человеческое вмешательство (даже с целью изучения) иногда излишне,
вот тут-то и приходят на выручку сенсорные сети, позволяющие без непосредственного участия человека собирать все необходимую информацию.

Сенсорная сеть использует в качестве узловых элементов две платы. На первой плате расположены температурный датчик, датчики влажности и барометрического давления и инфракрасный датчик. На второй плате находятся микропроцессор (частота 4 МГц), оперативная память объемом 1 Кбайт, флэш-память для хранения программ и данных, источник питания (две батарейки типоразмера АА) и радиопередатчик/
приемник, работающий на частоте 900 МГц. Сенсоры позволяют регистрировать всю необходимую информацию и передавать ее в базу данных главного компьютера. Все датчики предварительно проходят тщательное тестирование - плату с датчиками погружают в воду надвое суток и следят за ее функциональностью. Все сенсорные узлы образуют единую беспроводную сеть и способны обмениваться информацией. При этом передача информации от удаленного узла сети к шлюзу (Gateway Sensor) происходит по цепочке, то есть от одного узла сети к другому, что позволяет создавать большую зону покрытия.

Через шлюз информация достигает главного компьютера. Шлюз использует направленную антенну, что позволяет увеличить расстояние передачи до 300 м. С главного компьютера информация с помощью спутниковой связи передается через Интернет в исследовательский центр, расположенный в Калифорнии.

Не менее активно сотрудники лаборатории работают над прецизионной биологией, созданием биочипов. Кроме сенсорного восприятия мира твердых вещей, исследуется возможность "ощущать" жидкие среды и биологические, развивающиеся объекты. Подобные исследования открывают колоссальные перспективы для медицинских и фармацевтических разработок, осуществления химических процессов и изготовления биологических препаратов. Поскольку главное предназначение сенсорных сетей – восприятие и передача полезной информации, специалисты лаборатории Intel в Беркли заняты разработкой методики объединения сенсоров с предметами, мониторинг которых вменяется им в обязанность, а также исследуют возможность создания «актуаторов» - устройств на основе сенсоров, которые позволяют влиять на ситуацию, а не только регистрировать ее состояние. Сенсорные сети очевидным образом полезны для военных приложений, одна из возможных вариаций сетей проходила "боевые" испытания в Афганистане, где вооруженные силы США разместили несколько сот сенсоров с целью отслеживания передвижений боевой техники противника. Однако о внедрении
реальных сетей в нашу жизнь говорить рано, сеть уязвима в отказоустойчивости. Атакой в сенсорной сети, приводящей к отказу в обслуживании (Denial of Service - DoS), является любое событие, которое уменьшает или ликвидирует возможность сети выполнять ожидаемую от нее функцию. Авторы предлагают основывать протоколы сенсорных сетей на многоуровневой архитектуре, что может повредить эффективности сети, но повысит ее надежность. Обсуждаются виды DoS-атак, типичные для каждого уровня, и приемлемые методы защиты. Таким образом, уже сегодня, несмотря на несовершенство и пока еще достаточно узкий круг использования, сенсорные сети находят применение в науке, а в дальнейшем и в жизни.

Использовались материалы с сайтов:

Введение

Беспроводная сенсорная сеть - распределённая, множества датчиков (сенсоров) и исполнительных устройств, объединенных между собой посредством радиоканала. Область покрытия подобной сети может составлять от нескольких метров до нескольких километров за счёт способности ретрансляции сообщений от одного элемента к другому.

Основными особенностями беспроводных сенсорных сетей являются самоорганизация и адаптивность к изменениям в условиях эксплуатации , поэтому требуются минимальные затраты при развертывании сети на объекте и при последующем ее сопровождении в процессе эксплуатации.

Краткая история

Одним из первых прообразов сенсорной сети можно считать систему СОСУС, предназначенную для обнаружения и идентификации подводных лодок. В середине 1990-х годов технологии беспроводных сенсорных сетей стали активно развиваться, в начале 2000-х годов развитие микроэлектроники позволило производить для таких устройств достаточно дешёвую элементную базу. Беспроводные сети начала 2010-х годов в основном базируются на стандарте .

Назначение

Основное назначение заключается не только в обмене данными между узлами по децентрализованной самоорганизующейся сети, но и в сборе передаваемой информации (в основном, данных) от датчиков (температуры, давления, влажности, уровня радиации, акустических колебаний) в центральный узел с целью ее последующего анализа или обработки.

Востребованность беспроводных сенсорных сетей на рынке также тесно связана с концепцией интеллектуализации таких объектов как дом, офис и производственные помещения, где городской человек проводит до 90% своего времени, а также с концепцией создания кибернетических производств (полностью оснащенных роботами), первоочередной задачей которых является внедрение беспроводных технологий на уровне АСУ ТП .

Технология сенсорных сетей предназначена для решения самого широкого круга задач промышленного мониторинга и контроля и имеет следующие неоспоримые преимущества перед другими существующими беспроводными и проводными системами:

  • возможность установки датчиков на уже существующий и эксплуатирующийся объект без дополнительных работ по прокладке проводной сети ;
  • низкая стоимость отдельного элемента контроля;
  • низкая стоимость монтажа, пуско-наладки и технического обслуживания системы;
  • минимальные ограничения по размещению беспроводных устройств;
  • высокая отказоустойчивость сенсорной сети в целом.

Описание

Аппаратное обеспечение беспроводных узлов и протоколы сетевого взаимодействия между ними оптимизированы по энергопотреблению для обеспечения длительного срока эксплуатации системы при автономных источниках питания. В зависимости от режима работы время жизни узла может достигать нескольких лет.

Каждый узел сенсорной сети обычно содержит порты ввода/вывода данных с различных датчиков контроля внешней среды (или сами датчики), микроконтроллер и радио-приемопередатчик, а также автономный или внешний источник питания. Это позволяет устройству получать результаты измерений, проводить начальную обработку данных, и поддерживать связь с внешней информационной системой. Микроконтроллер может быть использован для реализации интеллектуальной распределенной обработки данных. В интеллектуальной беспроводной сенсорной сети устройства способны на локальном уровне обмениваться информацией, анализировать ее и передавать до определенной глубины обработанную информацию, а не "сырые" данные. Это позволяет значительно сократить требования к пропускной способности сети, увеличить масштабируемость и срок эксплуатации системы. Однако добавление "интеллекта" в сеть требует учета особенностей прикладной задачи, поэтому этот подход,как правило, эффективен при разработке заказной узкоспециализированной системы.

Таким образом ключевыми особенностями сенсорных сетей являются:

  • способность самоорганизации сети передачи информации и ее адаптация к численному составу устройств;
  • способность ретрансляции сообщений от одного элемента к другому;
  • возможность наличия датчиков в каждом элементе;
  • длительный срок автономной работы (1 год и более)

Сегодня технология беспроводных сенсорных сетей, является единственной , с помощью которой можно решить задачи мониторинга и контроля, критичных к требованиям по времени работы батареи питания устройств, их надежности, автоматической или полуавтоматической настройки каждого из них, возможности простого добавления или исключения устройства из сети, распространения сигналов через стены и потолки при низкой стоимости системы. А технология ретранслируемой ближней радиосвязи , известная как «Сенсорные сети», является одним из современных направлений развития самоорганизующихся отказоустойчивых распределенных систем промышленного мониторинга и управления ресурсами и процессами.

Максим Сергиевский

Новейшие технологии беспроводной связи и прогресс в области производства микросхем позволили в течение последних нескольких лет перейти к практической разработке и внедрению нового класса распределенных коммуникационных систем - сенсорных сетей.

Беспроводные сенсорные сети (wireless sensor networks) состоят из миниатюрных вычислительно-коммуникационных устройств - мотов (от англ. motes - пылинки), или сенсоров. Мот представляет собой плату размером обычно не более одного кубического дюйма. На плате размещаются процессор, память - флэш и оперативная, цифроаналоговые и аналого-цифровые преобразователи, радиочастотный приемопередатчик, источник питания и датчики. Датчики могут быть самыми разнообразными; они подключаются через цифровые и аналоговые коннекторы. Чаще других используются датчики температуры, давления, влажности, освещенности, вибрации, реже - магнитоэлектрические, химические (например, измеряющие содержание CO, CO2), звуковые и некоторые другие. Набор применяемых датчиков зависит от функций, выполняемых беспроводными сенсорными сетями. Питание мота осуществляется от небольшой батареи. Моты используются только для сбора, первичной обработки и передачи сенсорных данных. Внешний вид мотов, выпускаемых различными производителями, приведен на рис. 1.

Основная функциональная обработка данных, собираемых мотами, осуществляется на узле, или шлюзе, который представляет собой достаточно мощный компьютер. Но для того, чтобы обработать данные, их нужно сначала получить. Для этой цели узел обязательно оснащается антенной. Но в любом случае доступными для узла оказываются только моты, находящиеся достаточно близко от него; другими словами, узел не получает информацию непосредственно от каждого мота. Проблема получения сенсорной информации, собираемой мотами, решается следующим образом. Моты могут обмениваться между собой информацией с помощью приемопередатчиков, работающих в радиодиапазоне. Это, во-первых, сенсорная информация, считываемая с датчиков, а во-вторых, информация о состоянии устройств и результатах процесса передачи данных. Информация передается от одних мотов другим по цепочке, и в итоге ближайшие к шлюзу моты сбрасывают ему всю аккумулированную информацию. Если часть мотов выходит из строя, работа сенсорной сети после реконфигурации должна продолжаться. Но в этом случае, естественно, уменьшается число источников информации.

Для выполнения функций на каждый мот устанавливается специализированная операционная система. В настоящее время в большинстве беспроводных сенсорных сетей используется TinyOS - ОС, разработанная в Университете Беркли. TinyOS относится к программному обеспечению с открытым кодом; оно доступно по адресу: www.tinyos.net. TinyOS - это управляемая событиями операционная система реального времени, рассчитанная на работу в условиях ограниченных вычислительных ресурсов. Эта ОС позволяет мотам автоматически устанавливать связи с соседями и формировать сенсорную сеть заданной топологии. Последний релиз TinyOS 2.0 появился в 2006 году.

Важнейшим фактором при работе беспроводных сенсорных сетей является ограниченная емкость батарей, устанавливаемых на моты. Следует учитывать, что заменить батареи чаще всего невозможно. В связи с этим необходимо выполнять на мотах только простейшую первичную обработку, ориентированную на уменьшение объема передаваемой информации, и, что самое главное, минимизировать число циклов приема и передачи данных. Для решения этой задачи разработаны специальные коммуникационные протоколы, наиболее известными из которых являются протоколы альянса ZigBee. Данный альянс (сайт www.zigbee.org) был создан в 2002 году именно для координации работ в области беспроводных сенсорных сетей. В него вошли крупнейшие разработчики аппаратных и программных средств: Philips, Ember, Samsung, IBM, Motorola, Freescale Semiconductor, Texas Instruments, NEC, LG, OKI и многие другие (всего более 200 членов). Корпорация Intel в альянс не входит, хотя и поддерживает его деятельность.

В принципе, для выработки стандарта, в том числе стека протоколов для беспроводных сенсорных сетей, ZigBee использовал разработанный ранее стандарт IEEE 802.15.4, который описывает физический уровень и уровень доступа к среде для беспроводных сетей передачи данных на небольшие расстояния (до 75 м) с низким энергопотреблением, но с высокой степенью надежности. Некоторые характеристики радиопередачи данных для стандарта IEEE 802.15.4 приведены в табл. 1.

Таблица 1. Характеристики радиопередачи данных для IEEE 802.15.4

Полоса частот, МГц

Нужна ли лицензия

Географический регион

Скорость передачи данных, Кбит/с

Число каналов

На данный момент ZigBee разработал единственный в этой области стандарт, который подкреплен наличием производства полностью совместимых аппаратных и программных продуктов. Протоколы ZigBee позволяют устройствам находиться в спящем режиме бо льшую часть времени, что значительно продлевает срок службы батареи.

Очевидно, что разработать схемы обмена данными между сотнями и даже тысячами мотов не так-то просто. Наряду с прочим необходимо учесть тот факт, что сенсорные сети работают в нелицензированных частотных диапазонах, поэтому в ряде случаев могут возникать помехи, создаваемые посторонними источниками радиосигналов. Желательно также избегать повторной передачи одних и тех же данных, а кроме того, учитывать, что из-за недостаточной энергоемкости и внешних воздействий моты будут выходить из строя навсегда или на какое-то время. Во всех таких случаях схемы обмена данными должны модифицироваться. Поскольку одной из важнейших функций TinyOS является автоматический выбор схемы организации сети и маршрутов передачи данных, беспроводные сенсорные сети по существу являются самонастраиваемыми.

Чаще всего мот должен иметь возможность самостоятельно определить свое местоположение, по крайней мере по отношению к тому другому моту, которому он будет передавать данные. То есть сначала происходит идентификация всех мотов, а затем уже формируется схема маршрутизации. Вообще все моты - устройства стандарта ZigBee - по уровню сложности разбиваются на три класса. Высший из них - координатор - управляет работой сети, хранит данные о ее топологии и служит шлюзом для передачи данных, собираемых всей беспроводной сенсорной сетью, для дальнейшей обработки. В сенсорных сетях обычно используется один координатор. Средний по сложности мот является маршрутизатором, то есть может принимать и передавать данные, а также определять направления передачи. И наконец, самый простой мот может лишь передавать данные ближайшему маршрутизатору. Таким образом, получается, что стандарт ZigBee поддерживает сеть с кластерной архитектурой (рис. 2). Кластер образуют маршрутизатор и простейшие моты, у которых он запрашивает сенсорные данные. Маршрутизаторы кластеров ретранслируют данные друг другу, и в конечном счете данные передаются координатору. Координатор обычно имеет связь с IP-сетью, куда и направляются данные для окончательной обработки.

В России тоже проводятся разработки, связанные с созданием беспроводных сенсорных сетей. Так, компания «Высокотехнологичные системы» предлагает свою аппаратно-программную платформу MeshLogic для построения беспроводных сенсорных сетей (сайт www.meshlogic.ru). Основным отличием этой платформы от ZigBee является ориентация на построение одноранговых ячеистых сетей (рис. 3). В таких сетях функциональные возможности каждого мота одинаковы. Возможность самоорганизации и самовосстановления сетей ячеистой топологии позволяет в случае выхода части мотов из строя спонтанно формировать новую структуру сети. Правда, в любом случае необходим центральный функциональный узел, принимающий и обрабатывающий все данные, или шлюз для передачи данных на обработку узлу. Спонтанно создаваемые сети часто называют латинским термином Ad Hoc, что означает «для конкретного случая».

В сетях MeshLogic каждый мот может выполнять ретрансляцию пакетов, то есть по своим функциям напоминает маршрутизатор ZigBee. Сети MeshLogic являются в полной мере самоорганизуемыми: никакого узла-координатора не предусмотрено. В качестве радиочастотных приемопередатчиков в MeshLogic могут использоваться различные устройства, в частности Cypress WirelessUSB, которые так же, как и устройства стандарта ZigBee, работают в диапазоне частот 2,4... 2,4835 ГГц. Следует отметить, что для платформы MeshLogic существуют только нижние уровни стека протоколов. Считается, что верхние уровни, в частности сетевой и прикладной, будут создаваться под конкретные приложения. Конфигурации и основные параметры двух мотов MeshLogic и одного мота стандарта ZigBee приведены в табл. 2.

Таблица 2. Основные характеристики мотов различных производителей

Параметры

Микроконтроллер

Процессор

Texas Instruments MSP430

Тактовая частота

От 32,768 кГц до 8 МГц

Оперативная память

Flash-память

Приемопередатчик

Cypress WirelessUSBTM LP

Диапазон частот

2400-2483,5 МГц

2400-2483,5 МГц

Скорость передачи данных

От 15,625 до 250 Кбит/с

Выходная мощность

От –24 до 0 дБм

От –35 до 4 дБм

От –28 до 3 дБм

Чувствительность

1 или 2 чипа

Внешние интерфейсы

12-разрядный, 7 каналов

10-разрядный, 3 канала

Цифровые интерфейсы

I2C/SPI/UART/USB

I2C/SPI/UART/IRQ/JTAG

Другие параметры

Напряжение питания

От 0,9 до 6,5 В

От 1,8 до 3,6 В

Температурный диапазон

От –40 до 85 °C

От 0 до 70 °C

От 0 до 85 °C

Отметим, что интегрированных сенсорных датчиков на этих платах нет.

Укажем, что в первую очередь отличает беспроводные сенсорные сети от обычных вычислительных (проводных и беспроводных) сетей:

  • полное отсутствие каких бы то ни было кабелей - электрических, коммуникационных и т.д.;
  • возможность компактного размещения или даже интеграции мотов в объекты окружающей среды;
  • надежность как отдельных элементов, так и, что более важно, всей системы в целом; в ряде случаев сеть может функционировать при исправности только 10-20% сенсоров (мотов);
  • отсутствие необходимости в персонале для монтажа и технического обслуживания.

Сенсорные сети могут быть использованы во многих прикладных областях. Беспроводные сенсорные сети - это новая перспективная технология, и все связанные с ней проекты в основном находятся в стадии разработки. Укажем основные области применения данной технологии:

  • системы обороны и обеспечение безопасности;
  • контроль окружающей среды;
  • мониторинг промышленного оборудования;
  • охранные системы;
  • мониторинг состояния сельскохозяйственных угодий;
  • управление энергоснабжением;
  • контроль систем вентиляции, кондиционирования и освещения;
  • пожарная сигнализация;
  • складской учет;
  • слежение за транспортировкой грузов;
  • мониторинг физиологического состояния человека;
  • контроль персонала.

Из достаточно большого числа примеров использования беспроводных сенсорных сетей выделим два. Наиболее известным является, пожалуй, развертывание сети на борту нефтяного танкера компании ВР. Там с помощью сети, построенной на основе оборудования Intel, осуществлялся мониторинг состояния судна с целью организации его профилактического обслуживания. Компания BP проанализировала, может ли сенсорная сеть работать на борту судна в условиях экстремальных температур, высокой вибрации и значительного уровня радиочастотных помех, имеющихся в некоторых помещениях судна. Эксперимент прошел успешно, несколько раз автоматически осуществлялись реконфигурация и восстановление работоспособности сети.

Примером еще одного реализованного пилотного проекта является развертывание сенсорной сети на базе военно-воздушных сил США во Флориде. Система продемонстрировала хорошие возможности по распознаванию различных металлических объектов, в том числе движущихся. Применение сенсорной сети позволило обнаруживать проникновение людей и автомобилей в контролируемую зону и отслеживать их перемещения. Для решения этих задач использовались моты, оснащенные магнитоэлектрическими и температурными датчиками. В настоящее время масштабы проекта расширяются, и беспроводная сенсорная сеть устанавливается уже на полигоне размером 10 000x500 м. Соответствующее прикладное программное обеспечение разрабатывается несколькими американскими университетами.

История и сфера использования

Одним из первых прототипов сенсорной сети можно считать систему СОСУС , предназначенную для обнаружения и идентификации подводных лодок. Технологии беспроводных сенсорных сетей стали активно развиваться сравнительно недавно - в середине 90-х годов. Однако лишь в начале XXI века развитие микроэлектроники позволило производить для таких устройств достаточно дешевую элементную базу. Современные беспроводные сети в основном базируются на стандарте ZigBee . Немалое количество отраслей и сегментов рынка (производство, различные виды транспорта, обеспечение жизнедеятельности, охрана), готовых для внедрения сенсорных сетей, и это количество непрерывно увеличивается . Тенденция обусловлена усложнением технологических процессов, развитием производства, расширяющимися потребностями частных лиц в сегментах безопасности, контроля ресурсов и использования товаро-материальных ценностей. С развитием полупроводниковых технологий появляются новые практические задачи и теоретические проблемы, связанные с применениями сенсорных сетей в промышленности, жилищно-коммунальном комплексе, домашних хозяйствах. Использование недорогих беспроводных сенсорных устройств контроля параметров открывает новые области для применения систем телеметрии и контроля, такие как :

  • Своевременное выявление возможных отказов исполнительных механизмов, по контролю таких параметров, как вибрация, температура, давление и т. п.;
  • Контроль доступа в режиме реального времени к удаленным системам объекта мониторинга;
  • Автоматизация инспекции и технического обслуживания промышленных активов;
  • Управление коммерческими активами;
  • Применение как компоненты в энерго- и ресурсосберегающих технологий;
  • Контроль эко-параметров окружающей среды.

Следует отметить, что несмотря на длительную историю сенсорных сетей , концепция построения сенсорной сети окончательно не оформилась и не выразилась в определенные программно-аппаратные (платформенные) решения. Реализация сенсорных сетей на текущем этапе во многом зависит от конкретных требований индустриальной задачи. Архитектура, программно-аппаратная реализация находится на этапе интенсивного формирования технологии, что обращает внимание разработчиков с целью поиска технологической ниши будущих производителей .

Технологии

Беспроводные сенсорные сети (WSN) состоят из миниатюрных вычислительных устройств - мотов, снабженных сенсорами (датчиками температуры, давления, освещенности, уровня вибрации, местоположения и т. п.) и приемопередатчиками сигналов, работающими в заданном радиодиапазоне. Гибкая архитектура, снижение затрат при монтаже выделяют беспроводные сети интеллектуальных датчиков среди других беспроводных и проводных интерфейсов передачи данных, особенно когда речь идет о большом количестве соединенных между собой устройств, сенсорная сеть позволяет подключать до 65000 устройств. Постоянное снижение стоимости беспроводных решений, повышение их эксплуатационных параметров позволяют постепенно переориентироваться с проводных решений в системах сбора телеметрических данных, средств дистанционной диагностики, обмена информации. «Сенсорная сеть» является сегодня устоявшимся термином (англ. Sensor Networks ), обозначающим распределенную, самоорганизующуюся, устойчивую к отказу отдельных элементов сеть из необслуживаемых и не требующих специальной установки устройств . Каждый узел сенсорной сети может содержать различные датчики для контроля внешней среды, микрокомпьютер и радиоприемопередатчик. Это позволяет устройству проводить измерения, самостоятельно проводить начальную обработку данных и поддерживать связь с внешней информационной системой.

Технология ретранслируемой ближней радиосвязи 802.15.4/ZigBee , известная как «Сенсорные сети» (англ. WSN - Wireless Sensor Network ), является одним из современных направлений развития самоорганизующихся отказоустойчивых распределенных систем наблюдения и управления ресурсами и процессами. Сегодня технология беспроводных сенсорных сетей, является единственной беспроводной технологией, с помощью которой можно решить задачи мониторинга и контроля, которые критичны к времени работы датчиков. Объединенные в беспроводную сенсорную сеть датчики образуют территориально-распределенную самоорганизующуюся систему сбора, обработки и передачи информации. Основной областью применения является контроль и мониторинг измеряемых параметров физических сред и объектов .

  • радиотракт;
  • процессорный модуль;
  • элемент питания;
  • различные датчики.

Типовой узел может быть представлен тремя типами устройств :

  • Сетевой координатор (FFD - Fully Function Device);
    • осуществляет глобальную координацию, организацию и установку параметров сети;
    • наиболее сложный из трех типов устройств, требует наибольший объем памяти и источник питания;
  • Устройство с полным набором функций (FFD - Fully Function Device);
    • поддержка 802.15.4;
    • дополнительная память и энергопотребление позволяет выполнять роль координатора сети;
    • поддержка всех типов топологий («точка-точка», «звезда», «дерево», «ячеистая сеть»);
    • способность выполнять роль координатора сети;
    • способность обращаться к другим устройствам в сети;
  • (RFD - Reduced Function Device);
    • поддерживает ограниченный набор функций 802.15.4;
    • поддержка топологий «точка-точка», «звезда»;
    • не выполняет функции координатора;
    • обращается к координатору сети и маршрутизатору;

Компании разработчики

На рынке представлены компании различных типов:

Примечания


Wikimedia Foundation . 2010 .

Смотреть что такое "Беспроводные сенсорные сети" в других словарях:

    - (другие названия: беспроводные ad hoc сети, беспроводные динамические сети) децентрализованные беспроводные сети, не имеющие постоянной структуры. Клиентские устройства соединяются на лету, образуя собой сеть. Каждый узел сети пытается переслать… … Википедия

    Эту страницу предлагается переименовать в Беспроводная самоорганизующаяся сеть. Пояснение причин и обсуждение на странице Википедия:К переименованию/1 декабря 2012. Возможно, её текущее название не соответствует нормам современного… … Википедия

    Беспроводные ad hoc сети децентрализованные беспроводные сети, не имеющие постоянной структуры. Клиентские устройства соединяются на лету, образуя собой сеть. Каждый узел сети пытается переслать данные предназначенные другим узлам. При этом… … Википедия

    Беспроводные ad hoc сети децентрализованные беспроводные сети, не имеющие постоянной структуры. Клиентские устройства соединяются на лету, образуя собой сеть. Каждый узел сети пытается переслать данные предназначенные другим узлам. При этом… … Википедия

    Архитектура типичной беспроводной сенсорной сети Беспроводная сенсорная сеть распределённая, самоорганизующаяся сеть множества датчиков (сенсоров) и исполнительных устройств, объединенных между собой посредством радиоканала. Область… … Википедия

    Для улучшения этой статьи желательно?: Переработать оформление в соответствии с правилами написания статей. Проверить статью на грамматические и орфографические ошибки. Исправить статью согласно с … Википедия

    Телеметрия, телеизмерение (от др. греч. τῆλε «далеко» + μέτρεω «измеряю») совокупность технологий, позволяющая производить удалённые измерения и сбор информации для предоставления оператору или пользователю, составная часть… … Википедия

    Сверхширокополосные (СШП) сигналы радиосигналы (СВЧ сигналы) со «сверхбольшой» шириной полосы частот. Применяются для сверхширокополосной радиолокации и сверхширокополосной радиосвязи. Содержание 1 Определение 2 Регулирование … Википедия

    Первый Открытый Протокол беспроводной сети передачи данных, разработанный для целей автоматизации зданий и управления распределёнными объектами. One Net может быть использован со множеством существующих приемопередатчиков (трансиверов) и… … Википедия